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Level spacing functions and the connection problem of a fifth 
Painlev6 transcendent 

Pragya Shukla 
Maison de L'lnde, Cite Universitaire, Boullevard Jourdan, Pari-17, France 

Received 29 July 1994 

Abstract. In the study of level spacing functions for the eigenvalues of random matrices. 
Mahoux and Meha studied the functions s(r), A(r) and B ( t )  related to certain Fredholm 
determinants. These functions can be expressed in terms of the fifth (or the third) Painlev6 
transcendents. The asymptotic behaviour for t + m of these functions and their derivatives 
with respect Lo a parameter were derived by them except for m unknown constant. Using 
Jimbo's method of monodromy preserving deformations, we connect the behaviour of the fi~% 
Painlev6 transcendent a[ t = 0 and at t = m, thus determining the unknown constant. 

1. Introduction 

In the study of random matrices, the statistics of spacings of the eigenvalues can be 
expressed in terms of certain Fredholm determinants and their derivatives. These Fredholm 
determinants in turn are related to the fifth or the third PainlevC tmnscendents. Our aim is to 
connect the asymptotic behaviour of these Painlevt transcendents at t = 0 and t = CO, thus 
completing the asymptotic analysis of the Fredholm determinants carried out by Mahoux 
and Mehta [I]. 

Nonlinear differential equations appear in many branches of physics, e.g. in statistical 
mechanics [2], quantum field theory [3] and random matrices [l]. Painlevt considered the 
general second-order equation y" = F ( t ,  y ,  y') where the function F is rational in y, y', 
analytic in t ,  and the location of any singularities other than simple poles, of the solution y ( t )  
be independent of the initial conditions. By an exhaustive study Painlev6 and Gambier [4] 
found that the solutions of all such equations can be expressed either in terms of the known 
classical functions (solutions of linear equations and of nonlinear first-order equations) or 
in terms of solutions of six particular such equations. The solutions of these last mentioned 
six equations give new transcendental functions which are named as PainlevB-1 (PI), , , ,, 
Painlev66 (P6). 

Many of these physical problems, where one of the PainlevC functions appear, require 
one to express an asymptotic behaviour of the function in one region in terms of the boundary 
conditions specified in some other regions. These connection problems have been studied 
in many ways. One of these techniques makes use of the fact that Painlevt equations also 
appear as the integrability conditions of certain coupled linear partial differential equations 
(PDES) or Lax pairs. We use such 2 x 2 matrix partial differential equations to study those 
P5 equations which admit a one-parameter family of solutions at the origin and connect the 
asymptotic expansion y ( t ,  z )  at t + CO, z + 1 with the expansion about t = 0. A similar 
connection problem for P5, but with different asymptotic limits, was studied by McCoy 
and Tang [6] by using WKB techniques where they connect the two-parameter asymptotic 
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expansion y( t ,  s, U )  for a class of P5 at f + w (also for t i i w )  with the two-parameter 
expansion about t -+ 0 (with s and U as two parameters). The asymptotic behaviour of P5 
for f --f 00 and io;, are the physical regions for the transverse king model and Bose gas 
problems, respectively [6]. The case, we are going to consider in this paper, requires a 
study of asymptotic behaviour not only at f -+ w but also at z -+ 1 (both limits taken 
simultaneously). It is in this asymptotic limit that P5 appears in the Fredholm determinants 
related to the spacing distribution of eigenvalues in random matrix theory (Rhn’). Note here 
that the parameter z appearing in our case does not remain fixed as t + 00 (in fact a 
function of f  and z is kept fixed, to be explained later in this paper), contrary to the case 
considered by McCoy and Tang where the two parameters s and U are kept fixed at certain 
values (see [6] for details). 

This paper is organized as follows. Subsection 2.1 gives a summary, relating Painlevk 
equations to the Fredholm determinants appearing in R h m  In subsection 2.2, we briefly 
review the definition of monodromy data and monodromy preserving deformations. For later 
use, we also discuss the monodromy data associated with the system of 2 x 2 PDES whose 
coefficient matrices give rise to the fifth Painlev6 equation under monodromy preserving 
condition. The t + 0 limit of P5 has already been worked out by Jimbo [7] and, as 
we intend to use this result to get rid of unknown constants in our t + w limit of P5, 
we maintain the same parametrization to describe the monodromy data as that used by 
Jimbo. Section 3 contains the procedure that we will follow to obtain our result. Section 4 
determines the behaviour of PDEs in the t -+ 00 limit. Section 5 contains the solutions 
of these limiting forms of PDEs which finally lead to the y(t -+ 00) solution. Section 6 
deals with the special cases of P5 and their application to the random matrix problem. 
The purpose of this section is to determine the value of a constant (Y which appears in 
the derivatives of certain Fredholm determinants (discussed briefly in subsection 2.1). The 
asymptotic analysis carried out by Mahoux and Mehta [I]  for these determinants presents 
us with a solution with an unknown constant U. By comparison with earlier work, they 
guess the value to be f i j 8 .  Section 6 shows that their guess is correct. 

2. Prelimnaries 

2.1. Relation behveen RMT and the Painlevd franscendent 

It has been shown [l] that the Fredholm determinant 

of the integral equation 

with the kernel K given as 

(2.3) 

appears in the spacing distributions of the eigenvalue spectra of RMT. 
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Consider the function E,&, t). the probability that a randomly chosen interval of length 
2t, measured in units of the local mean spacing, contain exactly n eigenvalues. For a general 
value of p ,  the Q(n, t )  are essentially the linear combination of Fredholm determinants [8]. 
For example, for the unitary ensemble ( p  = 2), one has 

(2.4) 

where F ( z ,  t )  is given by (2.1). 
The relation between the function Ea(n,  t)  and F ( z ,  t )  for the orthogonal ensemble 

( p  = 1) and the symplectic ensemble ( p  = 4) is more complicated and contains a linear 
combination of the latter [l]. In fact, it is convenient to study Ea's for these cases by 
defining Fredholem determinants F+ and F- as follows: 

where the eigenvalues hi are ordered as 0 < & < hl < . . . < 1 and the corresponding 
kernels K* appearing in the integral equation (2.2) are 

K*(x,  Y )  = 4 [ K k  Y ) f K ( - x ,  Y ) ]  , (2.7) 

Mehta 181 further introduces three new functions, namely, A ( z ,  t ) .  E(z ,  t )  and S(z,  f) 
where the first two can be written in terms of F+ as 

l a  

l a  
A ( z , t ) =  ---[logF+(z,t)+logF-(z,t)] 2 at (2.8) 

E ( ~ , t ) = - - - [ [ L o g F + ( z , t ) - l o g F - ( z , t ) ]  2 at (2.9) 

and the third, namely S, is completely determined by the nonlinear differential equation 

- idS + nS = --S'(SZ Z - (S32). dt 27rt 
(2.10) 

and the initial condition S(z,  0) = 1. Any one of these functions S, A and E completely 
determine the two other and each of them satisfies a nonlinear differential equation. A 
detailed information about these functions can be found in [I]. It is the relation of these 
functions S, A and E with the fifth or thud Painlev6 transcendent (as shown in [l]) which 
formally relates the fluctuation measures of RMT with the latter. For example, S can be 
expressed as follows (for simplicity of notation, we express S in terms of 

5 = x t  5 = 2 z / x  (2.1 1) 

(2.12) 
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with R and I real. If one writes the following equations: 

( R +  J;, = Y O  - J;) 
( I  + 1/;5 = Yi(1-  +A 

then both y ,  and yj satisfy the fifth Painlevd equation which is 

(2.13) 

(2.14) 

(2.15) 

with constants CY = -j3 = A. y = 0 and 6 = -2. Similarly one can relate A and E with 
P5 or P3 with different values the of constants 01, p,  y and 6 111. 

To gain an insight in the asymptotic behaviour of spacing distributions of RMT, Mahoux 
and Mehta studied the asymptotic expansion of S(<? r )  around ( = 2/n and for large 
positive values of r ,  which can be written as follows, (recall here that C = 2 / x  implies 
z = 1, a value at which we need to evaluate the derivative of F. to calculate Eo; see 
equation (2.4)): 

(2.16) 

with an undetermined constant 011; here Sn(r) = Rn(r)+iIn(r) with both R. and 1, having 
asymptotic expansions in l / r  Ill. 

The need to determine the value of the constant CY] persuades us to undertake the present 
study where we first study the behaviour of P5 under similar limiting conditions, namely 

? - + C O  ( + 2 / I r  (c - 2) eZr/Ji = constant (2.17) 
iT 

and then use the following equality to calculate CYI: 

(2.18) 

where equation (2.18) follows from (2.12), (2.13) and (2.16). 

2.2. Generalities on Painlev6 transcendent 

Earlier studies [5] on Painlev6 equations have shown that for each PainlevC trascendent. a set 
of 2 x 2 linear partial differential equations @DES) can be defined where the former appear 
in the coefficient mahices of the later. This allows us to study the asymptotic behaviour of 
these trancendents by analysing the related PDES in the corresponding asymptotic limit. We 
will discuss here the case for fifth Painlevd transcendent only 171. 
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Consider the following 2 x 2 system of linear partial differential equations: 

where A0 and A,  are 2 x 2 matrices 

3181 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where the eigenvalues of A0 and A I  are &$00, +I0 ; and U, U, y are functions of 5 .  The 
+ ( x ,  5 )  in the above is a 2 x 2 matrix. The integrability condition of equations (2.19) and 
(2.20) imply that 

2 ! .  

(2.24) 

satisfies the nonlinear ordinary differential equation (2.15) with constants ff, p ,  y ,  6 given 
by 

Note here that equations (2.13)-(2.18), shown in subsection 2.1, are still valid (derived for 
y(s) ,  satisfying equation (2.15) with 8 = -2) for y ( s )  if we replace by r/2 in each 
of these relations. Equations (2.19) and (2.20) have regular singularities at x = 0 and 
x = ? and an irregular singularity at x = CO. We denote them as no, a1 and a,. In 
general, + ( x ,  5 )  is a multivalued function of the complex variable x .  Let yj be a closed 
path encircling once the only singularity at aj. in the positive sense for yo and y1. and in 
the negative sense for y,. The analytical continuation of @ ( x ,  5 )  around the singular point 
aj following the path yj gives 

( f i x )  = F(x)Mj (2.26) 

where x becomes y,x following the path yj.  M, is the so-called monodromy matrix at aj.  
With a convenient choice of the paths yo, Y I  and ym one has 

MmM1Mo = 1 .  (2.27) 

Besides, due to irregular singularity at x = CO, we have the Stokes phenomenon. 
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Let Sj bethesector ( x ~ C I - - q ( 2 j - l ) c a r g x c B ( - 2 j + 5 ) ) .  Wedenote by 
@ j ( x , 7 )  the solution of (2.19), (2.20) uniquely defined by its asymptotic behaviour in 
sector Sj: 

The solutions $,(x, 7) and @j+l(x, r )  are connected by the so-called Stokes multipliers. In 
particular we have 

and 

(2.29) 

(2.30) 

In what follows we will be interested in the solution p ~ ( x ,  r) which we will indicate as 

The local behaviour of @ ( x ,  T) near the regular singularities x = 0 and x = T has the 
!&x* 7 ) .  

form 

I s 0  
@ ~ ( x , T )  = Go(s)[l +O(x)Jx'( -$)CO (23 1) 

= Gl(s)[ l  + O(X - - 7 )  ip - S t ) c I  (2.32) 

where Go and GI diagonalize A0 and AI 

(2.33) 

(2.34) 

and CO and C1 are the so-called connection matrices. The monodromy matrices MO and M I  
are given as 

M o = C 0  - I  e 2niT "0 (2.35) 

M I  = C;1e2ni7'CI. (2.36) 

From equations (2.26>-(2.30), the monodromy matrix Mm is given by 

It has been shown by Jimbo [7] that if we set 

eXiSyab+2cos~Bm=2cosno  O$Reu 6 1 

(2.37) 

(2.38) 
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then the connection matrices can be paramehized as follows (a # 0) 

D"'C,D = ( x sin ;;;-; e, + a) 
sin f (e, + 00 +U) -s sing (01 + 0, - a) 

x sin f (81 - 0, -a) 

1 

sin $ (e, + eo - U) -S e-"" 

sin f (0, + U )  

sin $ (e, - U )  

sin f (e, i- 6 + U) 

-s-'& (e, -eo + U) sin I (el - 6 - U )  

sin 4 (0, +a) 
sin 5 (6, -U) - >  e-zio/Z 

D"C0D = 

( ,nic-/z 

and for later use we set 

(2.39) 

(2.40) 

Here D"), DCo) and D are invertible diagonal inahicest. The connection matrices (given 
by (2.31) and (2.32)) related to these singularities, along with the 6"s form the monodromy 
data which is invariant with respect to r ;  see [5] for a detailed description. The knowledge 
of this monodromy data and its invariant nature, along with the singualarity data, has been 
used to study the behaviour of y in 5 + 0 by Jimbo [7]; we will use a similar technique 
to study the behaviour for 5 + 00. 

3. Procedure 

The Painlev6 transcendent y appearing in the random matrix theory depends on an extra 
parameter F through the initial conditions at 5 = 0. To emphasize this we will sometimes 
indicate this dependence explicitly. 

Our aim is to determine y(r ,  5 ) .  equation (2.24), which is a solution of (2.15), when 

{ - ; er/& = constant (3.1) 

by using the information available for y ( s  + 0,F). For this purpose (as is obvious 
from (2.24)), we need to determine two unknowns Ao(r) and A l ( s )  under the same limit. 
This further requires two equations in terms of A0 and A , .  The prior information we have 
about A0 and A I  is that they appear on the right-hand sides of (2.19) and (2.20) with 
properties given by (2.33) and (2.34). The need to determine A's in limit (3.1) makes our 
job easier as then it is possible to define two functions of + which are separable in x and r .  
This, along with the PDEs for + (equations (2.19). (2.20)), leads us to ordinary differential 
equations of these functions whose right-hand sides contain a linear relation of A, and 

t As the solution y of (2.15) depends on a fixed set of constants (U. p ,  y ,  6) which %e related to %,e1 and e, 
(equation (2.25)). so the e's are independent of 7; also each Painlev6 transcendent is related to a particular set of 
2 x 2 PDES (i.e. with a particular Singularity structure). 

( '1 r + c a  { + 2 / n  
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A1 (or only one of them) and are comparatively easier to solve due to their one-variable 
dependence. Using knowledge gained about the local solutions of these functions (obtained 
by their relationship with @ ( x ,  7 ,  <) while its local solutions are given by (2.28)-(2.32)) 
and their differential equations, we obtain two h e a r  relations of A0 and A l .  

(i) We first define a function $ ( x .  7, t)  = $ ( x ,  7 ,  F)GIx-~ '  the differential equation of 
which, with respect to x ,  has a limit under condition (3.1). The Limiting function $ ( x ,  7 )  

is separable in the variabIes x and 7 .  

(ii) Step (i) shows that Q ( x ,  T )  has only one regular singularity x = D and one irregular 
singularity. As the monodromy data remain unchanged under the variation in 7 ,  we use 
monodromy data (obtained by Jimbo by solving (2.19). (2.20) as 7 + 0) to find the local 
solutions of $ ( x ,  T )  around the singularities in x ,  which further leads to the determination 
of $(x, 7 )  for all x (as for given coefficient matrices Aj and monodromy data, there exist 
only unique local solution in x ) .  
(iii) But knowledge of $ ( x ,  7 )  is not sufficient as it does not give us both Ao(7 + 03, F -+ 
2,'~) and AI (7 + CO, < 4 2/x) separately. In fact, we need to define another function 

This can be achieved by the following steps: 

$ ( x ,  T I :  

where A is obtained from step (ii). Then, by repetition of steps (i) and (ii) with $ ( x ,  r) 
and its differential equation, we obtain separate values of AO(T + 03) and Al(7  -+ 03). 

4. Determination of ordinary differential equations in the T 4 CO, C -+ f limit 

Let us define a function $ ( x ,  7. () where 

$ ( x ,  T ,  5) = $ ( x ,  7, <)GL1(7)x-A1(z) (4.1) 

= $ ( x ,  7, [ ) X - ~ G ; '  (4.2) 

where Al(7) and TI are defined by (2.22) and (2.34). Recall that TI is a constant diagonal 
matrix, composed of eigenvalues of A l .  For simplicity of presentation, we will not be 
writing the functional dependence on < everywhere and assume it to be understood. 

The partial differentiation of (4.1), with respect to x ,  leads us to the following equation: 

(4.3) 

as A I  and T, are independent of x .  
Now as OUT aim is to have, firstly, a differential equation only in one variable, namely, 

x ,  and, secondly a linear relation consisting only of Ao and A I ,  we make the following 
assumptions. 

Under the limit (3.l), (i) [ $ ( x ,  7 ) ,  Al(r)] 4 0, and (ii) A 1 ( 7 ) / 7  + 0, where (i) is 
required for having a linear relation in A0 and A1 and (ii) is needed for $ to be separable 
in  the variables. Using these assumptions, it can be shown (by using (2.19)) that 

(4.4) 
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Under the limit (3.1) and by using the above assumptions. equation (2.20) can be used to 
show (appendix 1) that @ ( x ,  T )  and hence @ ( x ,  T )  is separable in x and T, that is, we can 
write @ ( x ,  T )  as follows: 

@(& 5 )  = c~(x)Gz(T). (4.5) 
For later purposes, it is convenient to introduce a function G3(5) such that G39(n) = 
rp(x)G, and GzGl = G3. Substitution of (4.5) in (4.4) shows that V ( X )  also satisfies 
equation (4.4). But as p(x) depends only on x and not on T ,  the differential equation 
governing its behaviour would not contain any z-dependence. As the eq~(4.4) and (4.5) are 
the results of assumptions (iji), the latter further leads us to the following relation (under 
limit (3.1)). 

LimAo(s)-Al(s)=A. (4.6) 
where A does not depend on r .  Equation (4.6) therefore give us one relation between A0 
and AI, but we need one more to calculate A0 and A I  separately. 

Let us define another function 

where 

(4.7) 

The whole idea behind choosing such a complicated-looking function lies in the following: 
(i) under the limif (3.1), $ is separable in x and T (see appendix 2); also by using (2.20) 
one can show that under condition (3.1) 

(4.9) 

where A I  is defined in appendix 2. Thus under the same limit, $ can be expressed as 
follows: 

which implies that 

(4.10) 

(4.11) 

where 'T' before 'exp' implies the 5-ordering of integration. 
(ii) This definition of 4 leads us to a differential equation which contains only a function 
of A I  thus giving the second required relation to calculate A0 and A I  separately. By 
using (4.11), (4.6), (4.8) and (2.19), it is easy to verify that under condition (3.1) 

(4.12) 

where 

A? = Iim T"e-GrA,(T)eG'r-A. (4.13) 

Thus the behaviour of AI(T) and Ao(t) under condition (3.1) can be determined by knowing 
A Y  and A ( T ) .  In the next section, we solve equations (4.4) and (4.12) to give us AY and 
A(r + 00). 
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5. Determination of X and A;- by using the monodromy invariance property 

5.1. Determination ofh 

As follows from (4.6). we need to determine A to know about A o ( r )  and A I ( ? ) .  As follows 
from (4.4). (4.5). A appears in the following differential equation satisfied by rp(x): 

(5.1) 

and hence can be calculated by knowing &). The latter can be written by explioting the 
information about the local behaviour of *(x) (as given by (2.28)-(2.30)) and the following 
relation (equations (4.1), (4.5)): 

As the Stokes phenomena and asymptotic behaviour of @ (given by (2.28H2.30)) 
are fixed for a given set of monodromy data (e's and connection matrices), relation (5.2) 
between rp and IJ requires that rpp(x) should have the following asymptotic behaviour and 
Stokes phenomena: 

rpj(x) - Q G;'IJx-' 

a ( x )  = G;'$"''. 
(5.3) 

Now, by using the commutability of 4 with A I  in the limit (3.1) and equation (4.1), one 
can show that IJx-fi = x - A l @ .  This gives us the following equality: 

r p z ( ~ )  = G;lX-A'@z 

(5.4) 

Similarly one has 



where Wj, (x )  is the Whi taer  function [9] and the matrix R is introduced to maintain the 
same Stokes multipliers for 'p as those of @ (see appendix 3). Here R is chosen to be 

with r = a l /a ,  where U I  and bl are the Stokes multiplier of the function W [7], namely 

The behaviour near the regular singularity x = 0 is given by 

1 0 .  

'ppl(x) = R-'GI(I + o ( x ) ) x i (  -')CAR (5.9) 

(5.10) 

where 

? ( u + e o o + e l )  I 

-~I -UI  
- l )  

I i: (0 - 0, -el)  
C A = (  * 

-~(-,])e-ni(o+e,+B~)/2 
r[l-z+AJ r(l-zL!@t} 

-~{,]e~iC~-e,-SNZ ~ I O I  
CA= [ 

r ( V 1  r (v} 
Now by differentiating 'p , (x)  with respect to x .  it can be shown (appendix 4)  that it satisfies 
the following differential equation 

) + (' 0)] R&). !? = R-' [! ( -e, -e1 
dx 2 5+e,+e1 e,+el 

-e,  - el 

Comparison of (5.1) and (5.11) gives 

(5.11) 

(5.12) 
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5.2. Determination of A Y  

From relation (4.7), it is easy to see (appendix 5 )  that the monodromy data of $ ( x ,  r, t) 
around the singularity x = 0 are the same as that for $ ( x ,  r ,  () around the singularity 
x = 7. We already know the local behaviour of $, around x = r (equation (2.32)) and the 
related connection matrix CI. Thus the local behaviour of G ( x ,  T), in the r + 00 limit, 
can be written as follows: 

lim$(x,r,() Texp - A l l o g r d r  [ J  1 

= G  ;" ( 1 +o(x-'))x!(o' -&, (x  + CO). 

Let us consider the following equation: 

dx x 2  

with local and asymptotic behaviours 

Comparison of equation (5.13) and (5.15) shows that 

limr"e-Gi$(x/r + T,T) Texp - A I  logs d r  = G;"@(x)C]. 1 s  1 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

If for further simplification, we redefine 4 as follows: 

thep the expressions of appendices 2 and 3, dealing with the behaviour of $ (defined 
by (4.7)), still remain valid for $ defined by (5.17). except that the definitions of A and 
Ay are now given as follows: 

A T  = lim T " ~ - ' ~ R A ~  (r)R-'eG'r-* (5.18) 

where A is defined as 

A = -e-GrRAR-'eGr, (5.19) 
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The connection matrix CI around the singularity x = 7 is given by (2.39). As was shown 
by Jimbo [7] for the t + 0 case (around equation (3.10) of his paper), for Cl to have a 
form like (2.39). G I  and CI should have the form 

and 

(5.20a) 

(S.2Ob) 

where 

-2(1 +(U +00)/2) sinx (7)rw 0 + e m  p,=-(i-.-eo)r(o). $1 
2 Y1 = (1 - U  -80) 

Using relation (5.16) in (4.12) and comparing with (5.14) gives the following result: 

Using (5.20), (5.18) and (5.12), we get the following result: 

81 r-m 

(5.21) 

(5.22) 

where 



3190 P Shuklu 

Here U ,  6, c ,  d depend on ? and can be obtained from relation (5.20a). This gives Ao(r ) ,  
as follows, in the limit r -+ 00: 

Using (5.22) and (5.24) in (2.24). we get 

(5.24) 

(5.25) 

Equation (5.25) gives us athe symptotic behaviour of y(r, <) in terms of two unknowns 
U and i. But as U and i are part of the monodromy data, and are thus constant with respect 
to r ,  they also appear in the y ( r  -+ 0, <) solution given by Jimbo [7]. But Mahoux and 
Mehta [ I ]  have obtained the solution of @.IO), i.e. S, in the limit (c -+ 0) and in terms 
of only one parameter, namely <. Then, by using equations (2.13) and (2.14), they also 
calculated y ( r  -+ 0, 5). Thus the comparison of the two solutions of y in the r -+ 0 limit 
will give us U and i in terms of one parameter <, which. on substitution in (5.23, gives us 
the one-parameter solution y ( r  -+ CO, <). 

6. Determination of the constant cq by using the ~ ( r  -+ ea) result of PS 

The behaviour of y , ( r ) ,  and y i ( r )  near r = 0 for the values of (a = &, p = -&, y = 
O. s = -4) is given as follows [I]: 

y d r )  = 1 + 2 ( $)I /*  + 2 (;) + . . 
y , ( t )  = - I  - 2(<r/2)'/' - 2(<r /~) '+  . . . . (6.2) 

Any one of the above two P5's can be expressed in terms of the other. The calculation 
of 011 can be made by comparing the results for y ( r  -+ 0) (obtained by Jimbo [7]) 
with equations (6.1) or (6.2). This determines the unknown constants U and i in (5.24). 
Relation (2.25) gives four sets of values (00,01,0,) for (a. p, y ,  6) = (4, -&, 0, -;), 
namely, (4,  ;,.ti), (:, i , O ) ,  ($. :.O). For the calculation of a1, let us choose the set 
(6'0,01,8,) = ( i ,  $, 0). Then y(r) (obtained from Jimbo's result for Ao(r -+ 0), A l ( r  -+ 
0)) is 

(6.3) 

Comparison of (6.1) and (6.3) gives U = f and i = - 3 / a .  y ( r )  in the r -+ CO limit 
can now be calculated (by using 'Mathematica' symbolic programming software) and, for 
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calculating @ I ,  can be expanded in terms of (5  - 2/n) 

+ 0 (4 ?-I 1 
= l + H  (6.4) 

where y~ = -lIJ;r/&. and 81 = ($6. But from (2.18) and (6.4). we have 

(6.5) 

Substituting the value of If, neglecting all terms containing e-' and comparing coefficients 
of terms containing the same powers of er, T and F on both sides gives a1 = f i / S .  
This value of 011 turns out to be same as that guessed by Mahoux and Mehta [I]. This now 
completes the determination of S(t. T ) ,  and hence the spacing distribution of the eigenvalues 
of random matrix theory in terms of all known constants. 

Appendix 1. Proof of separability of $ 

Equation (2.20) reads 

Integration of the above equation with respect to T leads to 

(Al.l) 

(A1.2) 

(A1.3) 

(A 1.4) 
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where '7" before 'exp' implies ?-ordering, where h ( x )  is defined by the initial conditions 
on + ( x ,  r ) .  Now under the assumption that + 0, the terms with n 2 1 in the 
sum appearing in the exponent of (A1.4) can safely be dropped. This leaves us with the 
following form of t,lr under the limit (3.1): 

* ( x ,  5) = h(x)  T exp [/" 
dr]  

(AIS) 

Hence it is obvious from (A1.5) that in the limit (3.1) * ( x ,  s) can be separated in terms of 
the variables x and 5. 

Appendix 2. Proof of separability of 4 
We have 

$ ( x , s ) = ( ~ + s ) "  e-G(x/r+r)* (t + t. 5, <) (A2.1) 

where the function * ( x / T  + 5, 5, <) satisfies the following equation: 

(A2.2) 

(A2.3) 

It is obvious from (A2.3) that the function @(x/T+T ,  T, <) is separable in x and 5. Also, 
as in the limit r + 00 the function (f + s))' + T" and the function e-'(:+.)) + e-Gr, 
it is therefore clear that the function $ is separable in x and r in the limit ? + 00. Again 

W.4) 
a$ (x ,~ )  a A 

= - [ (; + s) e-G(x/c+r)+ (: + s. 5, < 
as as 

A 
= Ailog(x/t + ?)$ + 

X A 
+ 5) 

+(;+z) (-G)(-; +s)e -~ (~ l~+r ) l l . (2 .+s ,s ,< )  5 

+ ""1 as (A2.5) 

where 

Ai = l l ' r r A z s - r A  dr. 

Substituting (A2.2) and (A2.3) in (A2.5). and taking the limit (3.1) leads us to 

- a$ =A~logr+- [ -A+rAe-GT(Ao(r ) -Al (r ) ) e  1 G T  r -A ]$. (A2.6) 
a s  s 

By using (4.6) and (4.8) in (A2.5), we get 

- a$ = [Ai I O g T ]  $. (A2.7) 
as 

It therefore follows from (A2.7) that, in +e limit (3.1), one can write $ = 
&x)  Texp(1 hi logs dr)  = Texp(/Al logs d?)@(x) where the matrix @ ( x )  is assumed 
to commute with A, .  
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Appendix 3. Derivation of equations (5.4) and (5.5) using the Stokes phenomena of W 
(equation (5.6)) 

The behaviour of the function (o(x) in various sectors can be written as follows 
(equation (5.6)): 

= R - ~ W ' R  (A3.1) 

( D Z ( X )  = R-' W z R .  (A3.2) 

But as a1 and bl are the Stokes multipliers of the function W ,  the relation between its 
solution in sectors 1 and 2 is given by 

(A3.3) 

This further implies that 

(A3.5) 

Now as $ = Q, this, along with equations (A3.1) and (A3.2), gives the following equality: 

(A3.6) 

Similarly by using the following relation between the solutions of W in sectors 2 and 3: 

one can show that 

(A3.7) 

(A3.8) 

Appendix 4. Verification of equation (5.11) 

The Whittaker function W,,* can be expressed in terms of the hypergeometric function 
H ( a ,  c; - x )  as follows 191: 

wk,s(e-"ix) = e"/z(-x)c/2H(a, c ;  - x )  (A4.1) 
I where a = 5 - k + s and c = 2s + 1. Using equation (A4.1), it can be shown that 
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But 

r(a + 1 ) H @  + 1, c + 1; - x )  
d 

- H ( a ,  c; - x )  = - 
dx r(4 (A4.4) 

and 

x H ( a  + 1 ,  c + 1; -x) = (c  - a  - 1)H(a + I ,  c; - x )  + H(a, c; -x ) .  

Using these relations in (A4.3). We get 

(A4.5) 

Now if we denote QI(X) as 

a1 a2 
= ( d  n 4 )  

(A4.6) 

(A4.7) 

But this is also the behaviour of the differential equation for a l ,  given by equations (5.6) 
and (5.1 1). In lhe same way one can obtain differential equations for a2, a3, a4 and show 
that that they match (5.11). 

Appendix 5. Monodrumy data for 4 
Let us consider the function 

X 
t, F )  = (5  i- r)" e-G(x/r+r)q (- + T, r ,  <) r r 

- - ;Ae-Gi * (2. r ,  0 (A5.1) 

where i = x / t  + r. 
The local behaviour of $(x, t, F) around x 4 0 can be written as follows: 

$(x 4 0 . 5 , ~ )  = tAe-Gr$ (i -+ t, 5, Z) . (A5.2) 

Now by using (2.32). the local behaviour of the function *(a, r ,  () around the 
singularity i = T can be written as 

@(is t, {) = Gl(s) [ l+  O( i  - r ) ] ( i  - s ) ~ ~ C I  (A5.3) 

=GI(T)[I+O(:)](~) 'CI r (A5.4) 
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Thus substitution of (A5.5) in (A5.2) g' ives us 

+(x -+ 0 , 7 , { )  = s"e-GrGl(r)s-TlxTIC~. (A5.6) 

Note that in both (A5.5) and (A5.6), the eigenvalue matrix TI and connection matrix Cl 
is the same. Also, the behaviour of 4, when taken around the singularity x = 0 in the 
complex x-plane, can be given as 

$(xe"', r,  {) = r"e-G7G1(s)r-T1~fie2niliC I (A5.7) 

= [rAe-G'~l (r)r-'~xfi c~]c;'~"'T' c1 (A5.8) 

= $(X,7,C)Ml. (A5.9) 

Here M I  is monodromy matrix of *(x,r ,<)  around the singularity x = 7 ,  described 
by (2.36). Hence, the function $(x, 7,  I) has the same monodromy matrix around the 
singularity x = 0 as that of @(x, 7,  F) around the singularity x = r. 
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